\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 2TE02AMT2
Course Name: DIPLOMA
Semester:II

Subject Name: Advanced Mathematics
Date: 18/5/2015
Marks:70
Time:02:30 TO 05:30

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

Q-1 Answer the following.

1) $|2 \mathrm{i}+\mathrm{j}-3 \mathrm{k}|=$ \qquad
2) If θ is the angle between the vectors x and y find $\sin \theta=$ \qquad
3) If the two vectors a and b are perpendicular to each other $a \cdot b=$ \qquad
4) If $\mathrm{f}(\mathrm{x})=\sin \mathrm{f}(2 \pi)=$ \qquad
5) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=$ \qquad
6) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=$ \qquad
7) $\lim _{x \rightarrow 0} \frac{x^{2}+x+1}{x+1}=$ \qquad
8) $\frac{\mathrm{d}(\mathrm{k})}{\mathrm{dx}}=$ \qquad (Where $\mathrm{k}=$ constant)
9) Write derivative of \sqrt{x}.
10) If $y=3 x^{2}$ find $\frac{d y}{d x}$
11) $\int 1 d x=$ \qquad
12) $\int \cos x d x=$ \qquad
13) $\int \frac{1}{1+\mathrm{x}^{2}} d \mathrm{x}=$ \qquad
14) $\int_{0}^{1} x d x=$ \qquad

Attempt any four from $\mathrm{Q}-2$ to $\mathrm{Q}-8$

$\mathrm{Q}-2(\mathrm{~A}) \quad$ If $\mathrm{A}=2 \mathrm{i}-\mathrm{j}-\mathrm{k}, \mathrm{B}=3 \mathrm{i}+2 \mathrm{j}-3 \mathrm{k}$ and $\mathrm{C}=4 \mathrm{i}+3 \mathrm{j}-3 \mathrm{k}$ find $|3 A+2 B-2 C|$.
(B) Prove that $\lim _{x \rightarrow 0} \frac{\sqrt{1-x^{2}}-\sqrt{1+x^{2}}}{x^{2}}=-1$
(C) Find $\frac{d y}{d x}$ if $y=(\sin x)^{x}$

Q-3 (A) Simplify: $(10 i+2 j+3 k) \cdot[(i-2 j+2 k) \times(3 i-2 j-2 k)]$.
(B) Evaluate: $\int \mathrm{xe}^{\mathrm{x}} \mathrm{dx}$
(C) Find $\frac{d y}{d x}$ if $y=\frac{x^{2}-1}{x^{2}+1}$

Q-4 (A) Find $\frac{d y}{d x}$ if $x=\frac{a}{2}\left(t+\frac{1}{t}\right), y=\frac{b}{2}\left(t-\frac{1}{\mathrm{t}}\right)$
(B) Evaluate: $\lim _{x \rightarrow \pi / 4} \frac{2-\sec ^{2} x}{1-\tan x}$
(C) For what value of m, vectors $2 i+m j+k$ and $2 i+4 j+5 k$ are perpendicular to each other?

Q-5 (A) Prove that angle between two vectors $i+j-k$ and $2 i-2 j+k$ is $\operatorname{Sin}^{-1}\left(\frac{\sqrt{26}}{3 \sqrt{3}}\right)$
(B) Find derivative of $f(x)=e^{x}$ using definition.
(C) If $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ prove that (i) $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$
(ii) $f(x-y)=\frac{f(x)}{f(y)}$.

Q-6 (A) Constant forces $3 i-j+2 k$ and $i+3 j-k$ act on a particle and the particle moves from the point $2 i+3 j+k$ to the point $5 i+2 j+3 k$. Find the work done by the forces.
(B) Find $\frac{d y}{d x}$ if $y=\log (\sec x+\tan x)$
(C) Evaluate: $\int \frac{(\log x)^{2}}{x} d x$

Q-7 (A) $\quad S=t^{3}-6 t^{2}+8 t-4$ gives the distance travelled by a body in t seconds. Find velocity and acceleration at $\mathrm{t}=4$ seconds.
(B) Evaluate: $\int \frac{2+3 \sin x}{\cos ^{2} x} d x$
(C) Find unit vector which is perpendicular to $a=i+j+k$ and $b=2 i-2 j+k$

Q-8(A) Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\tan x}{\tan x+\cot x} d x$
(B) Find the area of the region bounded by the curve $y=x^{2}$ and line $y=x+2$.
(C) If $f(\mathrm{x})=\frac{1}{1+\mathrm{x}}$ find $f(\mathrm{x})+f\left(\frac{1}{\mathrm{x}}\right)$

